
www.oss4b.it

Infrastructure as data with 
Ansible 

for easier Continuous Delivery

Carlo Bonamico
carlo.bonamico@nispro.it

http://www.carlobonamico.com/blog/
@carlobonamico

OSS4B 2013 - Open Source Software for Business
19-20 September 2013, Monash University Prato Centre

Prato, Tuscany, Italy

http://www.carlobonamico.com/blog/


www.oss4b.it

Do you like

• Staying up late to reconfigure a server?
• Having to rely on a server that took a week to setup, 

– and lose it because of an HD failure?

• Worrying about late and “frightening” releases?
• Spend hours/days troubleshooting

– Only to discover a minor difference in OS/app config

• Being unable to deploy a critical fix 
– because the upgrade process is so fragile and long that “it is better 

not to touch the system”? 

• Be unable to quickly scale your application on multiple 
servers 
– because the IT administration becomes too complex and 

time-consuming?



www.oss4b.it

Ansible Hello World

If the answer to these question is 

NO!

Then this talk is for you...

Discuss how to improve our software delivery...



www.oss4b.it

Or better...

• Find a better way of delivering value to users / customers
– Reduce the time between when new needs arise and when IT 

satisfies them 
– Even anticipating them...

• How long does it take to deploy a single line change into 
production?
– (crucial question by Mary Poppendieck)

•  Any work (code, configuration, setup...) available only to 
developers and testers, but not to users
– Is (almost) worthless!

We need 
a better process 
(and some tools)



www.oss4b.it

Why this is not easy?

• Time spent on tasks not effective 
– waste in Lean terms

• Long Test times and costs ↔ Low Quality

• Duration and complexity of deployments
– Releasing/Deployment means Risk
– So to avoid risk, we deploy less often...

• → This actually increases risk!



www.oss4b.it



www.oss4b.it

Continuous Delivery

• Avoid huge manual changes
– 1-2 macro releases per year
– Each requiring seven people each one of which has intimate detail 

of a single issue in the process

• If they go wrong, long service outages
– Unacceptable risk level
–

• Transition to many incremental steps
– Every week / day / even hours...
– Less risky (and more easily rolled back)
– Ideally automated

• Jez Humble, David Farley
– http://www.slideshare.net/jezhumble/continuous-delivery-5359386

Our highest priority is to satisfy the customer 
through early and continuous delivery of valuable software

The Agile Manifesto



www.oss4b.it

Advantages

• Widely adopted at 
– IBM, Amazon, Facebook, Google, ...
– Premium Credit Limited, London Multi-Asset Exchange, 

Commonwealth Bank
– RCS Media Group, Siemens, HP

• Best practice recommended by IBM and Toughtworks 
among many others. 

WHY?
• IT + Business managed and improved together

– Decrease Lead Time
– Increase opportunities for Learning / Innovation / Optimization

• Achieve both Quality AND Productivity



www.oss4b.it

Principles of Continuous Delivery

• The process for releasing/deploying software MUST be 
repeatable and reliable

• Automate everything!
• If somethings difficult or painful, do it more often
• Keep everything in source control
• Done means “released”
• Build quality in
• Everybody has responsibility for the release process
• Improve continuously

• http://java.dzone.com/articles/8-principles-continuous



www.oss4b.it

Continuous Delivery Practices

• Build binaries only once
• Use precisely the same mechanism to deploy to every 

environment
• Smoke test your deployment
• If anything fails, stop the line!
• Low Risk Releases

– incremental
– decouple deployment and release
– focus on reducing batch size
– optimize for resilience

• See also
– http://continuousdelivery.com/2012/02/four-principles-of-low-risk-s

oftware-releases/



www.oss4b.it

Ok, I want to do Continuous Delivery...
– to get advantages in term of efficiency, quality and reduction of 

time-to-market

• The part about incremental code changes and releases is 
familiar to me
– See Continuous Integration, Agile methods

• But how do I Continuously evolve my infrastructure?
– OS configuration
– Installed packages
– Security settings
– Performance tuning
– …

• This still requires manual work by ops people...
– We do not have time/resources to change our way of working



www.oss4b.it

What would I need...

• Manage BOTH code and infrastructure through a 



www.oss4b.it

The ideal Infrastructure management process is 

• Automatic
• Repeatable and consistent

– Recreate as many time as needed
• Across environments (DEV → TEST → PROD) 
• Across hosts (clusters - cloud)

• Versionable
• Robust and resilient to

– network failures
– hardware failures

• Self-checking



www.oss4b.it

AND “easy”

• In addition to that, lightweight, EASY to setup, use and 
learn
– with limited or no additional effort with respect to manual 

approaches
– by both Developers and Operations
– lending itself to incremental introduction
–

• What if infrastructure management was easier than 
hacking with keyboard and shell scripts?

Simplicity – the art of maximizing the amount of work 
NOT done – is essential

The Agile Manifesto



www.oss4b.it

Ansible

• What if setting up and configuring your cloud / private 
infrastructure were even simpler than writing a shell script? 

• Based on the concept of Infrastructure as Data
– simplicity as key design requirement
– powerful
– easy to learn for Dev and Ops people alike

• Created by Michael De Haan of Cobbler fame
– Open Source @ https://github.com/ansible/ansible/
– now supported by http://www.ansibleworks.com/

• Well documented
• Growing, active and supportive community



www.oss4b.it

Ansible provides

• Node inventory
• Three key capabilities: 

– remote execution across multiple machines
• actions and commands

– file, package and configuration distribution
– automated configuration and deployment 

orchestrated across machines



www.oss4b.it

What's inside?

• Modular, agentless, secure architecture
– Python core, modules in any language



www.oss4b.it

How does Ansible work?

• Work on all Unix/Linuxes
– currently limited Windows support

• Transport over SSH by default 
– or encrypted socket for performance 

• accelerated mode
– pluggable transport protocols 

• Text-based and versioning friendly
– inventory, configuration and playbooks in YAML

• No DB is involved
– but CMDBs can be integrated via API



www.oss4b.it

Getting Ansible

• Minimal install
– sudo addaptrepository ppa:rquillo/ansible
– sudo aptget update
– sudo aptget install ansible y

• Or even from git checkout or pip
– http://www.ansibleworks.com/docs/gettingstarted.html

• Minimal requirements
– Python 2.6 on the commander
– Python 2.4 on the nodes
– Three phyton packages (autoinstalled by pip or apt )

• Paramiko, Jinjia2, PyYaml



www.oss4b.it

Pizzamatic Time!

• Infrastructure for a fictional 
pizza-order-taking SAAS



www.oss4b.it

Pizzamatic infrastructure

• We start from “empty” Ubuntu Server 
images and add
– front-end server with Apache2 and mod_proxy
– back-end application servers with Tomcat 7
– Postgresql DB

• Common features
– Ssh public key – passwordless login
– Ufw for firewall

• Assume initial user/pwd: manager/ansibledemo



www.oss4b.it

Getting Started

• Configure /etc/hosts or DNS
• Configure ansible_hosts

– .ini format
– Hosts
– Groups, with []

• Global in ~/ansible_hosts
• Local with -i <<path to ansible_hosts>>



www.oss4b.it

First steps

• ansible k m ping u manager 
pizzamaticfetest01

– -k means ask password
– -m means module (ping)
– -u initial connection user
– Target host



www.oss4b.it

First steps (with Public Key)

• Setup passwordless initial login 
– sshkeygen b 2048 

» enter pizzamatic_rsa as filename
– sshadd ~/.ssh/pizzamatic_rsa
– sshcopyid i ~/.ssh/pizzamatic_rsa 
manager@pizzamaticgetest01

• Then 

– ansible m ping u manager 
pizzamaticfetest01

• If it hangs, either
– You forgot the -k, and a certificate was not installed (or viceversa)
– You added the -K (sudo password), and passwordless sudo is 

enabled



www.oss4b.it

Move to Playbooks

• Efficient way of describing the desired 
configuration of multiple hosts
– And then “apply” it
– Incrementally

• Auto-resume
• Synchronization
• Versioning

– Composition with Roles

• ansible-playbook pizzamatic.playbook



www.oss4b.it

Behaviour Driven Development - with Infrastructure???

• First, descrive desired infrastructure status 
as plain text
– #pizzamatic service requires frontend

• #pizzamatic service requires apache2
• #etc

– #pizzamatic service requires application 
servers

• Then translate it incrementally in ansible 
“actions” → execute it!



www.oss4b.it

Actions: an example
#Installing and configuring Apache 2

   name: require Apache2 package installed

    action: apt pkg=apache2

   name: Generate the virtual host configuration 

    action: template src=src/${service.name}ssl.j2 
dest=/etc/apache2/sitesavailable

   name: Ensure the site is up (custom command)

    action: command a2ensite ${service.name}ssl

  

   action: service name=apache2 state=started



www.oss4b.it

Ansible Actions

• Not ideal term! Very often “actions” do 
nothing!
– Because the system is already in the desired 

state
• action: file dest=/home state=present

• They do something only if the system is not 
in the desired state



www.oss4b.it

Ansible Actions

• Most Ansible Actions are Idempotent
– “big word” meaning that you can repeat them as many 

times as you want and always get the same result

• In the real world
– Turning a glass upside down to empty it is idempotent
– Filling a glass with water is NOT idempotent 

• In practice, it's what makes ansible useful



www.oss4b.it

BDD with Infrastructure???

• Red
– Error

• Yellow
– Applied, changed

• Green
– Already in the desired state



www.oss4b.it

Red: error



www.oss4b.it

Yellow: change performed



www.oss4b.it

Green: state already ok



www.oss4b.it

Infrastructure as what?

Ansible = Infrastructure as Data

You describe your infrastructure
You version the description
“Applying” the description and actually ensuring that 
the infrastructure exists and is in the desired state is 
an implementation detail 
- (and up to ansible, not you)



www.oss4b.it

Ansible Modules

• Clean and modular way of defining actions
– encapsulate best practices
– A single ansible action encapsulates lines and lines 

of shell scripts

• Very strong emphasis on reuse
– And abstraction



www.oss4b.it

Ansible Modules

• Implemented in any 
language
– Python, java, bash...
– Core modules are in 

python

• Input: 
– parameter string

• Output: 
– json data
– Including state

• Cloud
– ec2, linode, openstack, 

rackspace, vmware

• Commands
– command, shell, ...

• Database
– mongodb, mysql, postgresql, 

redis...

• Files
– assemble, copy, fetch, 

lineinfile, template

• Inventory
– add_host, group_by

And many more!



www.oss4b.it

Ansible Modules

• Messaging 
– rabbitmq

• Monitoring
– airbrake, boundary, datadog, 

nagios, pagerduty...

• Net Infrastructure
– arista, dnsmadeeasy, ...

• Network
– get_url, slurp, uri (REST 

client)

• Notification
– mail, irc, jabber,...

• Packaging
– apt, easy_install, gem, 

macports, npm, openbsd, 
pip, rpm, yum, ...

• Source Control
– bzr, git, hg, subversion

• System
– authorized_key, cron, facter, 

filesystem, group, lvg/lvol, 
mount, selinux, service, user

• Utilities
– accelerate, debug, wait_for

• Web 
– django_manage, htpasswd, 

supervisorctl



www.oss4b.it

Variables

• Declared 
– In the ansible_hosts file
– individual YAML files relative to the 

inventory file
• e.g. host_vars/pizzamatic-fe-test-01


ntp_server: acme.example.org



www.oss4b.it

Facts

• Automatically collected facts about systems 
involved in the playbook

– ${inventory_hostname}
– ${ansible_eth0.ipv4.address}

• Can be use as variables in playbook and 
templates

• Check with ansible <<hosts>> m setup
• Can extended with commander fact 

database (in facts.d)



www.oss4b.it

Templates

• Jinja2 templates 
– very similar to java ${property} syntax

• Env.sh.j2

export JAVA_HOME=/home/
{{service.user}}/jdk1.7.0
export PATH=$PATH:$JAVA_HOME/bin



www.oss4b.it

Handlers

• Respond to asynchronous events
- template: src=template.j2 
dest=/etc/foo.conf

•   notify:

•       restart apache

  handlers:
   name: restart apache
    action: service name=apache2 
state=restarted



www.oss4b.it

Playbook Structure
---

   hosts: pizzamaticfetest01

  gather_facts: yes

  user: pizzamatic

  sudo: yes

  

  vars_files:

     pizzamatic.yml

  

  vars:

    name: pizzamatic

  tasks:

   include: pizzamaticfe.playbook #child sees parent 
variables and params    



www.oss4b.it

Roles

• Encapsulate a reusable service definition including
– Actions
– Variables
– Templates
– Files

• Defined in standard directory structure (subproject-like)
• A host / group can have multiple roles
• A role can be applied to multiple groups
• E.g.

– Roles: common, postgres, tomcat, apache
– In DEV: all roles on a single machine
– In TEST/PROD: common on all machines, other roles to multiple 

machines in the cluster



www.oss4b.it

Roles example


 hosts: pizzamatic

  gather_facts: no

  sudo: yes

  user: manager

  roles:

     common

     jdk7

     postgres

     tomcat

     apache

  tasks:

    debug: "Generic task for {{service.user}}"



www.oss4b.it

File management and transfer

• To the nodes
– ansible atlanta m copy a "src=/etc/hosts dest=/tmp/hosts"

– ansible webservers m file a "dest=/srv/foo/b.txt mode=600 
owner=mdehaan group=mdehaan"

– ansible webservers m file a "dest=/path/to/c mode=644 
owner=mdehaan group=mdehaan state=directory"

– ansible webservers m file a "dest=/path/to/c state=absent"

• From the nodes
– Use the fetch module



www.oss4b.it

Case Studies



www.oss4b.it

Case A) Advertising project

• Platform for deliverying innovative advertising clips to 
digital cinemas across Italy
– Central server 
– N local players at each venue

• Challenge: high cost of in-site intervention
• Everything installed with Ansible

– Including video drivers, audio volume settings…

• Automatic configuration and software upgrades
– Even with intermittent connectivity

• Lessons learned
– Essential for an innovative project where cycle time and reliability 

where needed to meet demanding business deadlines
– Mitigated hardware problems



www.oss4b.it

Case B) Alfresco platform setup

• Used to be fairly time consuming
– OS / LVM for storage
– Postgresql DB

• And tablespace configuration

– JDK
– Alfresco 

• Configuration 
• Active Directory integration 

• Ansible script developed in 1-2 days
– Setup time: 15 minutes

• Easily adapted to three different projects / customers
– Even more reuse with the “roles” feature added in 1.2



www.oss4b.it

Advantages

• Significantly more reuse with respect to shell scripts
– Comparable effort on the first install
– Huge time saving on the following 

• Tests are much more reliable
– Exactly replicate PROD environment

• Support for incremental, always-on Green/Blue 
deployments



www.oss4b.it

Best Practices

• Good old Software Engineering Principles 
still apply!
– Don't Repeat Yourself
– Good Names make the difference
– Be simple
– S.O.L.I.D.

• http://butunclebob.com/ArticleS.UncleBob.Pri
nciplesOfOod



www.oss4b.it

Useful Tools

• Yaml Editor for Eclipse
– https://code.google.com/p/yedit/
– https://code.google.com/p/yamleditor/

• Git & Mercurial

https://code.google.com/p/yedit/
https://code.google.com/p/yamleditor/


www.oss4b.it

References - Ansible

• Ansible Home & Ansible Docs
– http://www.ansibleworks.com/docs/

• Presentations
– https://speakerdeck.com/mpdehaan/ansible

• AnsibleWorks
– http://www.ansibleworks.com/

• This tutorial
– https://github.com/carlobonamico/ansible-tutorial

And 
the very active 
google group

ansible-project



www.oss4b.it

Tips and Tricks

• Speed up SSH with Control Persist
– http://blogs.perl.org/users/smylers/2011/08/ssh-productivity-tips.ht

ml



www.oss4b.it

References - Continuous Delivery

• General
– http://continuousdelivery.com/
– http://www.slideshare.net/eduardsi/continuous-delivery-18191261
– http://www.thoughtworks.com/sites/www.thoughtworks.com/files/fil

es/us-format-continuous-delivery-brochure-online.pdf

• Maturity model
– http://info.thoughtworks.com/rs/thoughtworks2/images/Continuous

%20Delivery%20_%20A%20Maturity%20Assessment
%20ModelFINAL.pdf

• Patterns
– http://refcardz.dzone.com/refcardz/continuous-delivery-patterns



www.oss4b.it

References

• My blog
– http://www.carlobonamico.com
– http://slideshare.net/carlo.bonamico 

• Contact me
– carlo.bonamico@nispro.it 

• JUG Genova
– http://juggenova.net 

• Twitter
– @carlobonamico - #ansible

Thank you 

for your attention!

http://www.carlobonamico.com/


www.oss4b.it

License

• Creative Commons:
– Attribution-Non-Commercial-Share Alike 3.0
– You are free:

• to copy, distribute, display, and perform the work
• to make derivative works

– Under the following conditions:
• Attribution. You must give the original author credit.
• Non-Commercial. You may not use this work for commercial purposes.
• Share Alike. If you alter, transform, or build upon this work, you may 

distribute the resulting work only under a licence identical to this one.


	Presentation TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

